DC-DC Power Converters

نویسنده

  • Robert W. Erickson
چکیده

Dc-dc power converters are employed in a variety of applications, including power supplies for personal computers, office equipment, spacecraft power systems, laptop computers, and telecommunications equipment, as well as dc motor drives. The input to a dc-dc converter is an unregulated dc voltage Vg. The converter produces a regulated output voltage V, having a magnitude (and possibly polarity) that differs from Vg. For example, in a computer off-line power supply, the 120 V or 240 V ac utility voltage is rectified, producing a dc voltage of approximately 170 V or 340 V, respectively. A dc-dc converter then reduces the voltage to the regulated 5 V or 3.3 V required by the processor ICs. High efficiency is invariably required, since cooling of inefficient power converters is difficult and expensive. The ideal dc-dc converter exhibits 100% efficiency; in practice, efficiencies of 70% to 95% are typically obtained. This is achieved using switched-mode, or chopper, circuits whose elements dissipate negligible power. Pulse-width modulation (PWM) allows control and regulation of the total output voltage. This approach is also employed in applications involving alternating current, including high-efficiency dc-ac power converters (inverters and power amplifiers), ac-ac power converters, and some ac-dc power converters (low-harmonic rectifiers). A basic dc-dc converter circuit known as the buck converter is illustrated in Fig. 1. A single-pole double-throw (SPDT) switch is connected to the dc input voltage Vg as shown. The switch output voltage + – Vg L

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passivity-Based Control of the DC-DC Buck Converters in High-Power Applications

In this paper, a novel approach for control of the DC-DC buck converter in high-power and low-voltage applications is proposed. Designed method is developed according to passivity based controller which is able to stabilize output voltage in a wide range of operation. It is clear that in high-power applications, parasitic elements of the converter may become comparable with load value and hence...

متن کامل

A Repetitive Control- based Approach for Power Sharing among Boost Converters in DC Microgrids

In this paper a repetitive control (RC) approach to improve current sharing between parallel-connected boost converters in DC microgrids is presented. The impact of changes in line impedance on current sharing is investigated. A repetitive controller is designed and connected in series with current controller of the boost converters to control the switching signals such that by regulating of th...

متن کامل

DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...

متن کامل

High-Frequency Soft-Switching DC-DC Converters for Voltage and Current DC Power Sources

The paper presents soft switching PWM DC-DC converters using power MOSFETs and IGBTs. The attention is focused mainly on the full-bridge converters suitable for high power applications. The properties of the PWM converters are described in comparison to other categories of soft switching converters. An overview of the switching techniques using in the DC-DC converters is included. Consideration...

متن کامل

A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005